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ABSTRACT

We present the results of a study of the structure of a parallel compressible mixing layer in

a binary mixture of gases. The gases included in this study are hydrogen (H2), helium (He),

nitrogen (N2), oxygen (O2), neon (Ne) and argon (Ar). Pro�les of the variation of the Lewis

and Prandtl numbers across the mixing layer for all thirty combinations of gases are given. It is

shown that the Lewis number can vary by as much as a factor of eight and the Prandtl number by

a factor of two across the mixing layer. Thus assuming constant values for the Lewis and Prandtl

numbers of a binary gas mixture in the shear layer, as is done in many theoretical studies, is

a poor approximation. We also present pro�les of the velocity, mass fraction, temperature and

density for representative binary gas mixtures at zero and supersonic Mach numbers. We show

that the shape of these pro�les is strongly dependent on which gases are in the mixture as well

as on whether the denser gas is in the fast stream or the slow stream.
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Contract No. NAS1-19480 while in residence at the Institute for Computer Applications in Science and Engineer-

ing (ICASE), NASA Langley Research, Hampton, VA 23681-0001.
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1 Introduction

In the last decade the structure and stability of compressible mixing layers has become,

once again, an area of very active research. There are many experimental studies (Brown

and Roshko[1]; Bogdano�[2]; Papamoschou and Roshko[3]; Samimy and Elliot[4]; Elliot and

Samimy[5]; Clemens and Mungal[6]; Hall, et al.[7]; Elliot, et al.[8]) of the overall structure and the

turbulence, principally the large scale structures, of these 
ows. In some of these experiments,

for example those of Papamoschou and Roshko[3], Hall, et al.[7] and Ninnemann and Ng[9],

di�erent gases are in the two streams. In other words, the mixing layer exists in a binary gas

mixture.

There are also a substantial number of theoretical and numerical studies of the structure of

the compressible mixing layer as well as the stability of this 
ow. In almost all cases, it was

assumed that the 
uid properties in the mixing layer were those of a single gas and that variations

of density and viscosity across the layer were due solely to the variation in the temperature.

Of course as the mixture fractions of the gases change across the mixing layer, the viscosity,

di�usivity, speci�c heat, etc of the mixture will change so as to re
ect the changing composition

of the mixture as well as the change in the temperature.

Jackson and Grosch[10] formulated the stability problem of a compressible mixing layer for a

gas mixture, assuming that the mean 
ow �eld was known. They showed that the dimensionless

sonic speeds of the two streams as well as the convective Mach number were dependent on the

composition of the gas mixture. Kennedy and Gatski[11] carried out a theoretical calculation of

the structure of a supersonic/supersonic mixing layer in the binary gas mixture resulting from

the mixing of a hydrogen stream with a nitrogen stream. Calculations were carried out for �ve

values of the convective Mach number. The Kennedy-Gatski study included the variation of the


uid properties across the mixing layer caused by the variation of the gas composition. The

purpose of this paper is, in part, to correct and, in part, to extend to a wider variety of binary

gas mixtures the study of Kennedy and Gatski[11]. In particular, we will show that certain of

their results are incorrect and certain of their conclusions must be modi�ed.

The gases included in this study are hydrogen (H2), helium (He), nitrogen (N2), oxygen

(O2), neon (Ne) and argon (Ar). The choice of gases was not arbitrary. Hydrogen is the

fuel for proposed scram-jet engines. Papamoschou and Roshko[3] and Hall, et al.[7] used binary

combinations of He, N2 and Ar in their experiments. An accurate calculation of the structure of


ow �eld in a gas mixture and a meaningful comparison of the results of theory with experiment

must incorporate not only the variation of density with composition but also the changes with

composition and temperature of the thermal properties and the transport properties of the

mixture .

2 Thermal Properties and Transport Coe�cients

The binary gas mixture is characterized by the mass fractions, fFjg; j = 1; 2 of the species.

The mixture properties, heat capacity (CP ), coe�cient of viscosity (�), thermal conductivity (�)
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and binary di�usion coe�cient (D12) are functions of the fFjg and of the temperature T . These

properties vary continuously through the mixing layer as the temperature and mass fractions

vary.

The quest for an understanding of the variation of these thermal and transport properties

with temperature and mixture composition has been the central topic of the Kinetic Theory of

Gases and has engendered hundreds, if not thousands, of experiments for well over a century

and a half (Chapman and Cowling[12]; Hirschfelder, et al.[13]; Touloukian, et al.[14]; Maitland,

et al.[15]). Indeed, Chapman and Cowling's book, \The Mathematical Theory of Non-Uniform

Gases", is subtitled \An Account of the Kinetic Theory of Viscosity, Thermal Conduction and

Di�usion in Gases". Despite the vast e�ort which has been expended on this topic, the theory

is far from complete and yields some seemingly paradoxical results.

A satisfactory theory for the variation of transport properties ofmonatomic gases, both in the

unmixed state and as a mixture, has been developed (Chapman and Cowling[12]; Hirschfelder,

et al.[13]; Touloukian, et al.[14]; Maitland, et al.[15]) in terms of the molecular scattering cross

sections, temperature and composition. For binary mixtures the theory is reasonably straight-

forward but becomes much more complex for mixtures of more than two gases. There is good

agreement between theory and experiment for binary gas mixtures. However, there is much less

experimental conformation of the theory for other than binary mixtures.

The theory of the transport properties of mixtures of monatomic and polyatomic gases and

of binary mixtures of polyatomic gases is in a far less satisfactory state. The basic kinetic

theory for the transport properties of a pure polyatomic gas is a semi-classical one with certain

quantum mechanical corrections (Touloukian, et al.[14]; Maitland, et al.[15]). It appears that

there is a great sensitivity of the results to the detailed structure, including the anisotropy, of

the molecular potentials of polyatomic gases and these are not well known. In addition, some

of the collisions are inelastic or partially elastic and this adds further di�culties. For mixtures,

the theory is even more complicated and is, at best, no more accurate than the �rst order

Chapman-Cowling approximations and usually less accurate because of other approximations

which must be made in order to make the theory useful. The theory must be supplemented by

experimental measurements, say of the variation of viscosity with temperature, in order to obtain

the values of intermolecular potentials required to calculate the other transport coe�cients.

These experimental measurements are, in many cases, lacking or inadequate.

In the absence of a complete theory, we have used a mixture of the results of experimental

measurements and approximate theory to obtain the thermal properties and transport coe�-

cients of the binary gas mixtures.

2.1 Heat Capacity

The thermodynamic properties of a large number of substances over a wide range of tem-

peratures are tabulated by McBride, et al.[16]. The heat capacity of the individual gases used in

this study were taken from this tabulation and stored, as a function of temperature, in tabular

form within the code. The values for the individual gases, as a function of temperature, were
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obtained by interpolation. The mixture CP was calculated from :

CP = F1 CP1 + F2 CP2 :

2.2 Coe�cient of Viscosity

The viscosity of the individual gases was calculated using the �rst order Kinetic Theory

formulae as given by Maitland, et al.[15] (see their Appendix A5.2) and also by Anderson[17].

The viscosity is an explicit function of temperature and of a collision integral which, in turn, is

also a function of temperature. Maitland, et al.[15] tabulate values of various collision integrals

(see their Appendix 2) as a function of temperature. We used the values for the Lennard-Jones

(12-6) potential given in table A2.2. The calculated viscosity of the individual gases was stored

within the code in tabular form as a function of temperature. The value of the viscosity at a

speci�c temperature was obtained by interpolation.

The viscosity of a binary mixture of monatomic gases is given by Maitland, et al.[15] as a

function of the mole fractions of the gases, the viscosities of the individual gases and of a so-called

interaction viscosity arising from collisions between the molecules of the di�erent gases. We

converted the mole fractions to mass fractions and used the values of the Lennard-Jones (12-6)

collision integrals in the calculation of the interaction viscosity. Again, the values of interaction

viscosity were stored within the code in tables as a function of temperature. Interpolation was

used to obtain the value at a speci�c temperature. The value of the mixture viscosity at a

speci�c temperature was obtained using the formulae of Maitland, et al.[15] with the fFjg of

the individual gases, their viscosities and the interaction viscosity.

It should be noted that the theory used was that for a binary mixture of monatomic gases.

As pointed out by Maitland, et al.[15] (see page 315 and following) at �rst order the form of

the equations for the viscosity of a binary gas mixture of polyatomic gases is the same as for a

binary mixture of monatomic gases. For this reason, we used the formulae for monatomic gases

to also calculate the viscosities of polyatomic gases. Comparison of the calculated viscosities for

the polyatomic gases with tabulated experimental results (Touloukian, et al.[14]) showed good

agreement; the di�erences ranged from 0.01% to 0.20%.

2.3 Thermal Conductivity

We attempted to use a theory, similar to that used for viscosity, to calculate the thermal

conductivity. The calculated values were in very poor agreement with tabulated experimental

data for the polyatomic gases (H2, N2 and O2). This lead us to use the tabular experimental

data (Touloukian, et al.[18]) for the thermal conductivity of the individual gases. The mixture

conductivity was then calculated using the method of Mason and Saxena recommended by

Touloukian, et al.[18]. Because this theory has one form for mixtures of monatomic gases and

one for mixtures of polyatomic gases, the polyatomic form was used if at least one of the gases

was polyatomic.
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2.4 Binary Di�usion Coe�cient

Maitland, et al.[15] give a formula from �rst order Kinetic Theory for the binary di�usion

coe�cient, D12 of a gas mixture. This is a function of temperature and involves a collision inte-

gral which is also a function of temperature. In contrast to mixture speci�c heat, viscosity and

thermal conductivity, D12 is independent of the mass fractions of the gases. There is relatively

little experimental data for D12. We compared the computed values with the experimental val-

ues given by Hirschfelder, et al.[13] and by Bzowski, et al.[19]. The agreement was found to be

satisfactory; in most cases di�erences were in the range of 1% to 2% with the maximum di�er-

ence being 3.3%. As with the other coe�cients, D12 was computed at a series of temperatures

for each combination of gases. These values were stored in tabular form and values at speci�c

temperatures were found by interpolation.

3 Basic Equations

In what follows in referring to a binary gas, Gas1�Gas2, we use the convention that Gas1
has a mass fraction F1 which is zero at +1 and that Gas2 has a mass fraction F2 which is zero

at �1. That is, the stream at �1 is entirely Gas1 and that at +1 is entirely Gas2. These

gases have molecular weights W1 and W2, with W = W2=W1 being their ratio. The velocity

�eld has components (U; V ), T is the temperature and � is the density.

The equations were made nondimensional by the values at +1 of the density, �1, tempera-

ture, T1, speed, U1, pressure, P1 = R�1T1=W2 ( R is the universal gas constant ), viscosity,

�1, thermal conductivity, �1, mass di�usion coe�cient, D12;1, and speci�c heat, CP;1. The

ratio of speci�c heats at +1 is 
1 and M1 = U1=a1 is the Mach number at +1 with the

speed of sound given by

a2
1
= (
1 � 1)CP1 T1:

The Prandtl and Lewis numbers are de�ned as usual

Pr =
� CP

�
; (1)

and

Le =
�

� D12 CP

: (2)

These vary across the shear layer because the transport coe�cients and thermal properties vary

across the layer.

Using the Howarth-Dorodnitsyn transformation,

Y =
Z y

0

� dy; V̂ = �V + U

Z y

0

�x dy; (3)

and the boundary layer approximation, with primes denoting di�erentiation with respect to the

similarity variable,

� =
Y

2
p
x
; (4)
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and with

U = f 0(�); V̂ = (� f 0 � f)=
p
x; (5)

the nondimensional equations for the steady, laminar 
ow of compressible binary mixture are,

(�� f 00)0 + 2 ff 00 = 0; (6)

��
��

Pr

�
CP T

0

�
0

+ 2 CP f T 0 + (
1 � 1)M2

1
�� (f 00)2 +

�
��

Pr Le

�
T 0

2X
j=1

CP;jF
0

j = 0; (7)

��
��

Pr Le

�
F 0

1

�
0

+ 2 f F 0

1
= 0; (8)

1 = F1 + F2; (9)

1 = �T (WF1 + F2); (10)

CP = CP1 F1 + CP2 F2: (11)

The boundary conditions are

f 0 = T = F2 = 1; F1 = 0 � ! +1; (12)

f 0 = �U ; T = �T ; F1 = 1; F2 = 0 � ! �1: (13)

The parameters �U 2 [ 0; 1 ) and �T > 0 are the ratios of the speed and temperature of the gas

stream at �1 to that at +1. If �T is less than one the gas in the slow stream is colder than the

gas in the fast stream. If �T is greater than one the converse is true. The remaining parameter

is W , the ratio of molecular weights. If W > 1 the gas in the fast stream is heavier than that in

the slow stream, and if W < 1 the gas in the fast stream is lighter than that in the slow stream.

The equations given by Kennedy and Gatski[11] di�er from those above because of their

inconsistency in de�ning the Lewis number. Their de�nition of the Lewis number (just after

equation (5) on page 664) is the same as that used here and they used this de�nition in calculating

the Lewis number. However, in their equation (5) the Lewis number is the reciprocal of that

de�ned. Their equations (18) through (22) perpetuate this inconsistency. In addition, they used

the kinetic theory for mixtures of monatomic gases (even though bothH2 and N2 are polyatomic)

to calculate the transport coe�cients. They then used an ad hoc scheme to correct the thermal

conductivity to account for polyatomic e�ects. In contrast, we here use a combination of the

theory for polyatomic gases and tabulated experimental data.

The system of equations for f , T and F1 is seventh order and there are only six boundary

conditions. A seventh boundary condition can be found by matching the free stream pressures

across the layer (Ting[20]) if at least one of the streams is supersonic. However, if both are

subsonic, Klemp and Acrivos[21] showed that this condition is incomplete. The seventh boundary

condition is equivalent to determining the value of the stream function f at � = 0. We have set

f(0) = 0.

The system of equations and boundary conditions is a two point boundary value problem

which can be solved by a shooting method. In the limit � ! �1 the asymptotic forms of
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(6) - (8) can be integrated exactly. Using the three boundary conditions for f 0(�1), T (�1)

and F1(�1) to determine three of the constants of integration, these solutions contain four

unknown constants. Choosing values for these four constants determines the complete initial

conditions for (6)-(8) at � = �1. A fourth order double precision Runge-Kutta method was

used to integrate the system to � =1. Iteration on the values of the four constants was carried

on until the condition at � = 0 and the boundary conditions at � =1 are satis�ed. The system

was found to be extremely sti� and a nested iteration scheme was used. In this scheme, one

condition at a time was used and after each was satis�ed additional iterations were required to

resatisfy the previously used conditions. This iterative process was continued until all of the

boundary conditions were satis�ed.

4 Results

Kennedy and Gatski[11] only considered the mixture N2�H2. Here we considered the thirty

di�erent combinations of H2, He, Ne, N2, O2 and Ar for Gas1 � Gas2. We did not consider

systems of the same gas in both streams because this would require the inclusion of self-di�usion

for consistency and the theory and experimental measurements for this e�ect are wanting. Table

1 contains the values of W for each combination. This parameter has a wide range, from 19.813

for a H2 � Ar mixture to 0.050 for a Ar � H2 mixture and there is a corresponding variation

in the structure of the mixing layer. We �rst present the variation of the Lewis and Prandtl

numbers across the shear layer at M1 = 0. In all cases we took T1 = 300oK, �U = 0:5 and

�T = 1:5.

Figures 1, 2 and 3 are plots of the variation of the Lewis number across the mixing layer.

For most pairs of gases there are relatively large variations in the Lewis number. The largest

variation occurs for mixtures of He with Ar, O2 and N2 with the ratio of the values at �1 for

He � Ar and Ar � He being about eight. Large variations in the value of the Lewis number

also occur for mixtures of H2 with Ar, O2 and N2. It should be noted that the magnitude of

the variation is not strictly monotone with molecular weight ratio. The values of W are larger

for combinations of H2 with the heavier gases than for He and heavy gases. Yet the variation

of the Lewis number is smaller for combinations of H2 with heavy gases than for He with heavy

gases. A few gas mixtures have nearly constant Lewis number; mixtures of O2, N2 and Ar as

well as the H2�He and He�H2 mixtures. It might seem that a nearly constant Lewis number

would occur only for mixtures with W close to one. This is not true. The molecular weight

ratio for mixtures of O2, N2 and Ar lies in the range of 0.8 to 1.2, and these mixtures have

relatively constant Lewis number across the layer. However, mixtures of of H2 and He have W

close to 2.0 (or 0.5) and still have small variation of the Lewis number across the layer. Finally,

it can be seen that the Lewis number pro�les are generally not symmetric about the centerline

of the mixing layer and that interchanging the gases between +1 and �1 does not yield mirror

images about the mixing layer centerline. Particularly noticeable cases are mixtures of H2 or

He with any of Ar, Ne, N2 or O2.

The variation of the Prandtl number across the mixing layer is shown in Figures 4, 5 and
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6a, 6b for all of the gas mixtures. Figure 4 is a plot of the Prandtl number for the same gas

combinations as those whose Lewis number variation is shown in Figure 1. Figures 5 and 2 have

a similar relation. However, for the gases whose Lewis number variation is shown in Figure 3,

a single �gure could not adequately display the Prandtl number variation. As a result, Figure

6 has two parts (a) and (b). There is a substantial variation of the Prandtl number across the

mixing layer for all combinations of H2 or He with the heavier gases Ar, Ne, N2 or O2. As with

the Lewis number variation, the Prandtl number curves are generally not symmetric about the

center of the mixing layer, nor does interchanging the gases between +1 and �1 yield mirror

images of the Prandtl number curves.

In comparing these results to those of Kennedy and Gatski[11] there is general disagreement

between the results for the Prandtl and Lewis numbers given here and those of Kennedy and

Gatski. The shapes of the Prandtl and Lewis number pro�les given here are, approximately,

\mirror images" about � = 0 of those given by Kennedy and Gatski. The Prandtl number is

0.700 in the slow N2 stream, but only about 0.655 at � = �20:0. Its value decreases slowly

towards the center of the shear layer, reaching a minimum of about 0.38 just short of the middle

of the shear layer and then rises very rapidly with distance beyond the center of the shear layer,

reaching a value of 0.711 in the fast H2 stream. The Lewis number distribution is, on the other

hand, a monotone function of distance through the shear layer. It rises slowly from a value

of 0.322 in the N2 stream until near the center of the shear layer and then asymptotes over a

short distance to 2.010 in the H2 stream. The di�erent shape of the pro�les of these parameters

between our results and those of Kennedy and Gatski is due to the inconsistent de�nitions used

by Kennedy and Gatski as discussed in Section 3.

Finally, the lack of a re
ection symmetry of both the Lewis and Prandtl number curves about

the center of the mixing layer is a result of the non-symmetric variation of the temperature across

the layer. As stated above, all of the transport coe�cients are functions of temperature and so

show a corresponding non-symmetric variation across the layer. The \tails" of the Lewis number

and Prandtl number curves are always longest on the side of the mixing layer where a lighter

gas is di�using into the higher temperature region as compared to the reverse situation. A good

example of this is provided by the Lewis number and Prandtl number curves for Ar � H2 as

compared to those for H2 �Ar.

We next present additional results for the case considered by Kennedy and Gatski[11], N2�H2

for which W = 0:072. For this case the slow speed stream consists of N2 and the high speed

stream is H2. Figure 7 shows pro�les of the dimensionless velocity, mass fractions, temperature

and density as a function of the dimensionless distance across the shear layer for M1 = 0. The

general shapes of the velocity, mass fraction, temperature and density pro�les are similar to

those obtained by Kennedy and Gatski. This is, in part, because the values of these variables at

�1 are set by the boundary conditions and the equations enforce a smooth transition between

these boundary values. As seen from Figure 7, the velocity pro�le has a modest \tail" into the

slow stream and a rapid transition to the fast stream. The mass fraction of H2 decreases quite

slowly on the slow speed side of the mixing layer (�! �1); there is substantial di�usion of the

H2 from the relatively cold fast stream into the the relatively hot slow stream. This is also clear
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from the Lewis and Prandtl number pro�les shown in Figures 3 and 6(a). This e�ect is also

apparent in the temperature and density pro�les which have very long \tails" on the N2 side of

the layer; thus the temperature and density pro�les are shifted towards the N2 side of the layer

as compared to the velocity pro�le which lies almost exactly in the center of the layer. The

mid-points of the mass fraction pro�les are shifted towards the N2 side of the layer although not

as much as the density and temperature pro�les. Our results are similar to, but not identical to

those of Kennedy and Gatski. We also �nd that one of the points made by Kennedy and Gatski

is still valid; assuming constant values for the Lewis and Prandtl numbers in the shear layer is

a poor approximation when considering binary gases.

Next, the corresponding pro�les, forM1 = 0, in the case of H2�N2 (W = 13:897) is shown

in Figure 8. In this case the slow speed stream is H2 and the high speed stream is N2. Note

that Kennedy and Gatski[11] did not present any results for this case. The mean pro�les of

velocity, mass fraction, temperature and density are quite di�erent from those of the N2 �H2

case. In this case the velocity and mass fraction pro�les are those of a very thin shear layer.

The temperature and density pro�les indicate an only slightly thicker layer with short \tails"

in the higher speed, colder N2 stream. Again this behavior is seen in the Lewis and Prandtl

number pro�les of Figures 3 and 6(b). One can see that there is relatively little di�usion of H2

from the hotter, slower stream into the N2 of the colder, faster stream. Note that for this case,

in contrast to the N2�H2 
ow, the density and temperature pro�les have only a minimal o�set

from the velocity and mass fraction pro�les. The centers of all of the pro�les are slightly shifted

towards the high speed, N2 side of the layer

Finally, the velocity, mass fractions, temperature and density pro�les, at a free stream Mach

number of 3, for N2�H2 are shown in Figure 9 and for H2�N2 in Figure 10. The mean pro�les

of velocity, mass fraction and density at this higher Mach number are nearly identical to those

at M = 0 shown in Figures 7 and 8. This is true for both the case in which N2 is in the slow

stream and H2 is in the fast stream (Figure 9) as well as the reverse (Figure 10). The only

exception is the temperature pro�le for the N2 �H2 case. The long tail extending into the slow

speed, N2 side of the mixing layer is quite di�erent at M = 3 as compared to M = 0. With

M = 3, the temperature gradient is considerably higher near the center of the layer than at

M = 0. However, there is almost no di�erence in the temperature pro�le between M = 0 and

M = 3 for the case in which H2 is in the slow stream and N2 is in the fast stream.

5 Conclusions

By calculating the variation of the Lewis and Prandtl numbers across a mixing layer for all

thirty binary combinations of H2, He, N2, O2, Ne and Ar, we have shown that for most pairs of

gas mixtures there are relatively large variations in the Lewis number across the mixing layer.

There are also large variations in the Prandtl number for some of these binary gas mixtures. The

largest variation of both the Lewis and Prandtl numbers occurs for mixtures of the light gases

He or H2 with the heavy gases Ar, O2 and N2. However, the magnitude of the variation is not

strictly monotone with the molecular weight ratio. Both the Lewis and Prandtl number curves
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are not symmetric about the center of the mixing layer. This is a result of the non-symmetric

variation of the temperature across the layer. All of the transport coe�cients are functions of

temperature and so show a corresponding non-symmetric variation across the layer. The \tails"

of the Lewis number and Prandtl number curves are always longest on the side of the mixing

layer where a lighter gas is di�using into the higher temperature region as compared to the

reverse situation. Assuming constant values for the Lewis and Prandtl numbers of a binary gas

mixture in the shear layer is a poor approximation.

The general shapes of the velocity, mass fraction, temperature and density pro�les for a

binary mixture of N2 in the slow stream and H2 in the fast stream are similar to those obtained

by Kennedy and Gatski[11] despite their use of an inconsistent de�nition of the Lewis number.

This is, in part, because the values of these variables at �1 are set by the boundary conditions

and the equations enforce a smooth transition between these boundary values. The temperature

and density pro�les are shifted towards the N2 side of the layer as compared to the velocity

pro�le. For the opposite case of H2 in the slow stream and N2 in the fast stream (not done by

Kennedy and Gatski) the pro�les of velocity, mass fraction, temperature and density are very

di�erent from those of the other case. Here the velocity and mass fraction pro�les are those of a

very thin shear layer. The temperature and density pro�les are those of a slightly thicker layer

with quite short \tails" in the higher speed, colder N2 stream. There is relatively little di�usion

of H2 from the hotter, slower stream into the N2 of the colder, faster stream. For this case, in

contrast to the N2 �H2 
ow, the density and temperature pro�les have only a minimal o�set

from the velocity and mass fraction pro�les. Hence, one would expect that interchanging the

gases in the slow and high speed streams would have a considerable e�ect on the 
ow stability

and mixing. Finally, for the conditions used in this calculation, the pro�les at M = 3 are very

similar to those for M = 0.
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Table 1: The ratio of molecular weightsW , de�ned as the molecular weight of the gas at � = +1
divided by the molecular weight of the gas at � = �1, for the di�erent gases considered in this
study. The top row corresponds to the gases in the freestream at � = +1, while the �rst column
corresponds to the gases in the freestream at � = �1.

H2 He Ne N2 O2 Ar

H2 1.000 1.986 10.011 13.897 15.873 19.813

He 0.504 1.000 5.042 6.999 7.994 9.979

Ne 0.100 0.198 1.000 1.388 1.585 1.979

N2 0.072 0.143 0.720 1.000 1.142 1.426

O2 0.063 0.125 0.631 0.876 1.000 1.248

Ar 0.050 0.100 0.505 0.701 0.801 1.000
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Figure 1. Plot of the Lewis number as a function of � for �U = 0:5, �T = 1:5 and

M1 = 0. The dashed curves corresponds to the �ve combinations: He�Ar, H2�Ar,
Ne � Ar, O2 � Ar, N2 � Ar; the solid curves corresponds to the same combinations,

but interchanged in the free streams.
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M1 = 0. The dashed curves corresponds to the �ve combinations: He�O2, H2�O2,

Ne � O2, N2 � O2, H2 �He; the solid curves corresponds to the same combinations,

but interchanged in the free streams.
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Figure 4. Plot of the Prandtl number as a function of � for �U = 0:5, �T = 1:5 and

M1 = 0. The dashed curves corresponds to the �ve combinations: He�Ar, H2�Ar,
Ne � Ar, O2 � Ar, N2 � Ar; the solid curves corresponds to the same combinations,

but interchanged in the free streams.
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Figure 6(b). Plot of the Prandtl number as a function of � for �U = 0:5, �T = 1:5
and M1 = 0. The curves corresponds to the �ve combinations: He � N2, H2 � N2,

Ne �N2, He� Ne, H2 �Ne.
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Figure 7. Plot of velocity, mass fractions, temperature and density as a function of

� for the binary system N2 �H2. Here, �U = 0:5, �T = 1:5 and M1 = 0.
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Figure 8. Plot of velocity, mass fractions, temperature and density as a function of

� for the binary system H2 �N2. Here, �U = 0:5, �T = 1:5 and M1 = 0.
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Figure 9. Plot of velocity, mass fractions, temperature and density as a function of

� for the binary system N2 �H2. Here, �U = 0:5, �T = 1:5 and M1 = 3.
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Figure 10. Plot of velocity, mass fractions, temperature and density as a function

of � for the binary system H2 � N2. Here, �U = 0:5, �T = 1:5 and M1 = 3.
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